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Dynamics of phase separation in polymer solutions under shear flow
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We present a general model for the dynamics of phase separation in polymer-solvent mixtures under shear
flow, which unifies previous phenomenological theories. For the dilute case, the model can be derived in the
absence of hydrodynamic interactions via the appropriate Smoluchowski equation. Linear analysis shows that
the shear flow does not change the equilibrium phase boundary. We then generalize the model to the semidilute
case, and find that the phase separation temperature is indeed shifted by the shear flow. The results indicate that
a nonlinear concentration dependence of the modulus is necessary for a shift in the phase separation tempera-
ture.[S1063-651X97)50306-0

PACS numbds): 61.25.Hq, 47.10-g, 62.10+s

The dynamics of phase separation in polymer mixtureglilute regime, combined with a synthesis of phenomenologi-
under shear flow has generated a great deal of interest oveal approachefsi—6] leads us to propose the following set of
the last two decadel—-8]. A number of groups have re- equations to describe phase separation of polymer-solvent

ported that the phase separation of polymer-solvent mixtureslixtures under shear:
deed, a greatly enhanced turbidity is observed in flowing Jd¢ oF oF
| —Yw—| -V.7
w ®

can be dramatically changed by macroscopic flow fields. In-

polymer solutions at temperatures much higher than the E+U~V¢=§ 1V-[¢V(5¢
equilibrium critical temperaturfl—3]. However, the mecha-
nism of the observed phenomenon is not completely clear as +6, , (1)
current theoretical models provide conflicting explanations.
Helfand and FredricksofHF) argued that the observed phe- SF
nomenon is not a real phase separation, but is only a result of p T +v-Vu|==Vp+ 9V +V.7+ (V¢)(5—¢)
large-scale fluctuations in the monomer concentration in- w
duced by the shear flojét]. On the other hand, Onuki sug- I @)
gested that the equilibrium phase boundary is shifted to v
higher temperatures by the shear flp8]. Both groups are J
correct, and we believe the divergence in views may be at- ) () —U+E~VU—U~V5—(V5)*~U
tributable to the fact that the two groups used different mod- ot

els[7]. A key to resolving this issue is to develop a more —G(¢)5 3)
fundamental theory that will account for the complexity of '
the system, and this is what we report here.

In the dynamics of phase separation, the basic stochast
variable is the monomer concentrati@#(r,t), which de-
scribes the coarse-grained configuration of the system. Ho
ever, in the presence of shear flog(r,t) must couple with
the fluid velocityv(r,t), and the stress tensef(r,t) of the

2
Y g2
+o 12V o

In these equations, a linear stress-strain relatienGw is
%opted with scalar modulus, F(¢,w) is the free energy
JJunctional;v =v —kgTu(V ¢)/{, 7= 0~ G4, with & the unit
tensor;\ is the relaxation time, and the constants¢, 7,

p, andb are the excluded volume interaction parameter, the

deformed polymer chains. Since in general, the strain tensJFiCtion coeffic_ient, the solvent viscosit_y, the solvent denSity’
w and o are not independent variables, the stress tensor and the effective bond length, respectively. Note that, in gen-
chosen as the independent variable. The state of the syste#fdl, { is ¢ dependent, and has the interpretation of the
can then be described by a set of collective variablegolymer velocity in a two-fluid pictur¢10]. As usual, the
{¢,v,0}. The dynamics of the system is determined by a setncompressibility conditionV-v=0 is adopted, and is en-
of coupled Langevin equations governing the time evolutiorforced by choice of the pressupe Equation(2) is the gen-
of the state{¢,v,0}. The time evolution of is to be de- eralized Navier-Stokes equation, and together with E&.
scribed by the Navier-Stokes equation. One must constru@onstitutes a generalized Model(in the terminology of the
the Langevin equations fap and o. critical dynamics literatune[11], which has been used pre-
In princip|e' the Langevin equations f@r and o can be ViOUSly [4,6] The stress tensar is treated as a dynamical
projected out of the equation describing the evolution of thevariable satisfying Eq(3), which is referred to as the upper-
full probability distribution[9]. While seminal work has al- convected Maxwell equatiofi2]. Our method shows that
ready been carried out along this lipg7], and some general the polymer velocityy enters Eq(3), the Maxwell equation
features of the equation fap were derived4,7], one knows [10] and yields, from a microscopic starting point, contribu-
little about the equation for the stress tensorA systematic  tions to the Maxwell equation arising from order-parameter
approach to this problem, which can be carried out in thegradients and involving the excluded volume interactions.
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First we show that if hydrodynamic interactions are ne-with Gy(¢)=KkgT¢ the “ideal gas” pressure. For & sol-
glected(“NHI-dynamics™) [13], Egs.(1) and(3) can be de- vent, u¢ should be replaced bw¢® because the leading
rived for a dilute system using the constrained distributiongnteraction term is the three-body interaction. From the form
projected out of the full distribution functid®]. The state of of Eq. (5), the free energy can be expressed as
polymer-solvent mixtures in the presence of shear flow carr (¢, 7)=Fg(¢)+Fe(p,m), where Fy is the usual
be described microscopically by a fluid velocity fieldand a ~ Ginzburg-Landau form and is the elastic contribution,
set of monomer position vectorfR}={R;,R,, ..., Ry. Fel¢,m=3ifdr G Y(¢)ma+O(p—¢o)m? ...). The
The velocityv obeys the Navier-Stokes equatic®, while ~ form of the elastic free energy was proposed phenomeno-
the configuration of R} is determined by its probability dis- '0gically by Onuki[6]. _ o
tribution functional W ({R},t), which is governed by the  1he Fokker-PlanckFP) equation necessary for deriving
Smoluchowski equatiofl4] the dynamical equations can be derived by taking the time

derivative ofg(¢,o)
JW{RLY 9 j

= . i J ot - ~ IV ({R},t
at IR vi(Ra) + Lin(iRY) %U):J DR 6(¢—¢)5(a—0)% :
RN H @)
X BTWMJF IRmj PARKD @) Substituting Eq(4) into Eq. (7) and applying the local equi-

. librium approximation introduced by Kawasaki and
whereL ) is the mobility matrix,v (R,) is the fluid velocity  Sekimoto[9], we obtain

at positionR,,, U is the Edwards HamiltoniafiL4], and re-

peated indices imply summationsi,j=x,y,z, and 39(¢,U;t)2J DR 8(d— ) 5(o— &)
n=1,... N). (Our results may be easily generalized to al- ot

low U to contain any two-body, three-body . .. interactions

among the monomers. More general interactions among the Xi[ _Ui(Rn)+LHm({R})
monomers will just change the form of.) When hydrody- IRni

namic interactions are ignored, the mobility matrix P oU

Lym= ‘18”6nm, and one has what we have termed, for X kBTWJr R ]
compactness, NHI dynami¢43]. When hydrodynamic in- mj mj
teractions are taken into accoubf is given by the Oseen g(fﬁ at)
tensor, and one has the Zimm mofl&d]. In either case, this X‘Pe({R})l—i . (8
approach based on E@) is limited to dilute system§14]. ge(b,0)

For a given microscopic configuratiodR} of the
system, the molecular expressions #¢r) and o(r) can

be written as¢(r)=/Ndn 5(r—R.,), and o(r)=(3kgT/

Following the procedures developed in R&fl and using the
properties ofé functions, this FP equation can be written as

b?) fhdn 8(r —R,)(dR,/dn) (R, /dn). The probability dis- d9(¢,071) :f dr dr”

tribution functional of the stat¢®,o} at timet can be ex- at

pressed ag(¢,o;t)= DR 8(¢— ¢)8(o— )V ({R},1). 5 5
For the equilibrium state, ¥ reduces to XE '(A?r/JFAfrb/‘ KeT—=—

¥ ({R}) =exp{—U(R})/ksT}. Then,g(¢,0) reduces to the ap da(r) ob(r’)

constrained partition functiog.( ¢, o), which gives the con- SE
strained free energy of the system,F(¢,w) +—
= —kgTIng«(¢,a(w)). Note that the independent variable of ob(r’)
the free energy isv [15], so the stress-strain relation is \yhereF is the free energy and the projected Onsager coef-
needed to obtaift (¢,w). Our perturbation resulsimilar in  ficients are given by

spirit to the familiar random-phase approximatid]) for

:“g((b,o',t), avb:¢10' ) (9)

the free energy to Gaussian order can be writtefil&§ a aa(r)
Af ==\ 6(r'=Rp)——vi(r') |, (10)
1 b2 &Rni g
= — - 2, _— 2 e
F(q&,w)—kBTf dr{2 u+ Ny 1 +36¢0(Vq§) X o
ab [ 0a(r) ab(r")
1 A= Lan({R}) : (12)
+ 77] (5 " IRy 8ij Oe
4ksTG( o) ’

_ o Here the averages are over the equilibrium probability distri-
where ¢, is the average concentratiom, is a new stress pution functiong(¢,o). Note thatA ¢, andA #¢ are scalars,
tensor introduced for convenience and given byA? A%’ and A’? are second-rank tensors, aAd” is a

o=kgT[ 5+ (b%6)VV ¢]+ 7, andG is the shear modulus fourth-rank tensor. In Eq(9), the dot products stand for

given by “full scalar products.” For exampleg-A?% means$A?,
1 o-A? meanso:A?, and so on.
_3 il Frqm the FP equatiof9), we can obtain the Langevin
G(h)=2Col¢)| ud N) ’ © equations forp and o, respectively:
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at “fdr[A”’“"’W T A A Sy T S
SF P 5 5
o . _ Pd _ o LA OO
+A”"6cr(r’,t) kT 5</>(r’,t)A”' kBT[5¢(r,)A,,,+5U(r,).Arr,H
O\ 12 _KeT[12 145 v2 V.V
+m- | (12 N pz(KeT¢d—0)+ Voo +ulV-(V)a
aa(r,t)__fdr, AT AT SF Ao SF —(VV¢)'<T—U'(VV¢)]] : (19
at R S (r ) Sé(rt)

Note that Eq(18) is exact, just dependent on the form of the
Edwards Hamiltonian. Eq(19) involves a familiar decou-

H (13 pling approximation, in which averages over many bond dis-
placements are replaced by products of pairwise averages

5
ATTH ——— AT

ke T S0 A Sgirn A

[17].
Note that the above derivation is independent of a specific Substituting Eqs(14), (16), and(17) into Eq.(12), carry-
form of L, so that Eqs(12) and(13) are valid even with  jng out the integral over’, and adding the noise tery,
the inclusion of hydrodynamic interactions. one obtains

To further simplify the Langevin equations f@r and o,

one needs to calculate the projected Onsager coefficients. If d¢ 1 oF oF\ |
hydrodynamic interactions are neglected, five of the coeffi- EJFU'Vd’_g V-#V 5_¢ +V. |V S5ol 1I°9
cients can be obtained exactly. We list the first four expres- o 4
sions here SF
—-2VV: U(g , ]+0¢, . (20
Ay ==t gV is(r=1)], (14

Using the linear strain-stress relation, one can express
(6F/6¢), in terms of (6F/5¢),, and (5F/ow) 4 in Eq. (20)
(A7 )ij=—oi(r")[Ve8(r=r")]oy(r") and find that, usings= ¢ appropriate to the dilute case, Eq.
, , (1) is recovered. Next, substituting Eq4.5) and (19) into
Fui(r)[Vendr’=r)]o;(r) Eq. (13), and carrying out the integral over, we readily
+0i(r [V 800" —1)]ay(r) (15  arrive at Eq. (3) with the dilute-system identifications
N(¢p)=¢0b?(12kgT), andG(¢) =Gy( ) =kgT¢. Note that
a “renormalized” G as suggested by E¢6) should appear
Af’r(f’= V-V 8(r—=1r)e(r')] (16)  in a more complete derivation. We will discuss this point in
greater detail in a subsequent paper concerning the statics of
deformed polymer systemd6]. Here the decoupling ap-

(Af’r‘f)ij =§‘1{[V,-Vr,5(r—r’)aij(r’)] proximation[17] noted above only yields the trivial “ideal
) ) gas” pressure on the right-hand side of Eg). This com-
ViV 6r=r")Joy(r') pletes our derivation of Eq$1) and(3) for the dilute case.
IV Vend(r—r)]ey(r)} 17) We now perform a linear analysis of this model. For a

dilute system with no hydrodynamic interactions, one can
start with Egs.(20) or (1). However, as we now show, the

The expressions foh*? and A?7 have been obtained pre- Langevin equation foi can be obtained exactly without

viously [7]. The sixth Onsager coefficiem;’r‘f cannot be having an exphc[t form for the cons;ramed free energy,

calculated exactly. However, starting with the definition ofF(¢’U) " Subsut_utlng Eqs(14) and(18) |n_to Eq.(12), and
performing the integrals ovar, we find directly

A?? and A’ given in Eq.(11), we can derive the following

rr’ rr’
relations in the absence of hydrodynamic interactions: e
—+0-Vp={"kgTVZ($p+3ud?) =V -(V-0)]+ 0.

at
_fdr,(“? 5F, e 5|=, (21)
T op(r’) " ba(r’) This is essentially the equation proposed by HE [Ex-
5 cluded volume interactions have been included; more com-
—kBT[—, AR . :Aﬁ‘f” plicated interactions among the monomers introduce
op(r’) So(r’) straightforward modifications of the Laplacian tetrEqua-

tions (2), (3), and (21) describe phase separation in dilute
, solutions, in the absence of hydrodynamic interactions. Per-
forming a similar analysis to HF4] and Onuki[6], we first
(18 solve Eq.(3) for o to the “second-order fluid” level using

1
:gl[kBTVZ( ¢+§u¢2> ~-V-V.o
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the retarded motion expansion methd@], from which the  —1)G(¢o)/(ksT#3), ¢*=1/YN, and T, and T, are the
stresso can be expressed in terms ¢fandv [18]. At this  theta and critical temperatures, respectively. That is, phase
order only the leading non-Newtonian tern@({Vv|?)) are  separation is induced by the shear flow. From the expression
included. Then we substitute this constitutive relationdor of (AT)g, we see that as long as>1, the phase separation
into Egs.(21) and (2). Finally, by setting¢=¢o+ ¢, and  temperature is shifted. That is, a nonlinear concentration de-
v=Sye,+v,, whereS is the shear rate, we can solve the pendence of the modulus is crucial for the temperature shift.
equations foip andv to linear order ing; andv,. The result Whena=3, the expression forXT); is exactly the same as
shows that the phase separation temperature is not shifted §jat obtained by Onuki6]. _
the shear flow in the dilute case in agreement with[HF From a microscopic starting point, we developed a gen-
For the semidilute case, we assume that the Langevif'@ model for the dynamics of phase separation in polymer
equationg1)(3) remain valid. This is reasonable since EqS_solu'ﬂons in the presence of shear flow. For the dilute case,

; the diffusion equation fokp and the Maxwell equation for
&%ilzngézzs)c?g tﬁs hcﬂc;r)](\sl\t/:J”c';e(;ju;?::oxégﬁl?glsgﬂz%he_ o are derived from the Smoluchowski equation, showing that

nomenologically in studies of viscoelasticitg]. Hence we viscoelastic behavior of polymeric solutions can be obtained

assume the concentration can be increased somewhat, retajfie" that starting point. Linear analysis shows that the equi-

ing the structure of Eq$1)—(3), and that the only difference lbrludni1| [;hase bowhd"ar){d:S nc;}t shifted b?’ ;hen sth(:;]':lr ﬂrO\;V rfori
from the dilute regime is the concentration dependence o. € driute case, € the phase separation temperature is

some parameters, such as the moduBss) and \(d). indeed shifted upward for the semidilute case. Now it is clear

Hence the more general Langevin equatidfis—(3) may that concentration effects are crucial for a shift in the phase

reasonably be taken to describe semidilute dynamics. Sca”n%oundary. These cqnclusm_ns agree with ava!lable EXpert-
analysis[6] and our random-phase-approximation reggit ent datd 3], and unify previous phenomenological theories

show that at mean-field level for the semidilute case,[4’6]'

G(¢)~ ¢“, with =2 for good solvent andk=3 for a 6

solvent. With this assumption, substituting E§) into Egs. T.S. wishes to thank S. A. Patlazhan and R. Bhagavatula
(1) and (2) and performing the linear analysis, we find that for useful discussions. We also thank Professor T. Ohta for
the phase boundary is indeed shifted. The temperature shifiis interest and suggestions. This work was supported by the
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