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Dynamics of phase separation in polymer solutions under shear flow
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We present a general model for the dynamics of phase separation in polymer-solvent mixtures under shear
flow, which unifies previous phenomenological theories. For the dilute case, the model can be derived in the
absence of hydrodynamic interactions via the appropriate Smoluchowski equation. Linear analysis shows that
the shear flow does not change the equilibrium phase boundary. We then generalize the model to the semidilute
case, and find that the phase separation temperature is indeed shifted by the shear flow. The results indicate that
a nonlinear concentration dependence of the modulus is necessary for a shift in the phase separation tempera-
ture. @S1063-651X~97!50306-0#

PACS number~s!: 61.25.Hq, 47.10.1g, 62.10.1s
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The dynamics of phase separation in polymer mixtu
under shear flow has generated a great deal of interest
the last two decades@1–8#. A number of groups have re
ported that the phase separation of polymer-solvent mixtu
can be dramatically changed by macroscopic flow fields.
deed, a greatly enhanced turbidity is observed in flow
polymer solutions at temperatures much higher than
equilibrium critical temperature@1–3#. However, the mecha
nism of the observed phenomenon is not completely clea
current theoretical models provide conflicting explanatio
Helfand and Fredrickson~HF! argued that the observed ph
nomenon is not a real phase separation, but is only a resu
large-scale fluctuations in the monomer concentration
duced by the shear flow@4#. On the other hand, Onuki sug
gested that the equilibrium phase boundary is shifted
higher temperatures by the shear flow@6#. Both groups are
correct, and we believe the divergence in views may be
tributable to the fact that the two groups used different m
els @7#. A key to resolving this issue is to develop a mo
fundamental theory that will account for the complexity
the system, and this is what we report here.

In the dynamics of phase separation, the basic stocha
variable is the monomer concentrationf(r ,t), which de-
scribes the coarse-grained configuration of the system. H
ever, in the presence of shear flow,f(r ,t) must couple with
the fluid velocityv(r ,t), and the stress tensors(r ,t) of the
deformed polymer chains. Since in general, the strain ten
w ands are not independent variables, the stress tenso
chosen as the independent variable. The state of the sy
can then be described by a set of collective variab
$f,v,s%. The dynamics of the system is determined by a
of coupled Langevin equations governing the time evolut
of the state$f,v,s%. The time evolution ofv is to be de-
scribed by the Navier-Stokes equation. One must const
the Langevin equations forf ands.

In principle, the Langevin equations forf ands can be
projected out of the equation describing the evolution of
full probability distribution@9#. While seminal work has al-
ready been carried out along this line@4,7#, and some genera
features of the equation forf were derived@4,7#, one knows
little about the equation for the stress tensors. A systematic
approach to this problem, which can be carried out in
551063-651X/97/55~6!/6344~4!/$10.00
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dilute regime, combined with a synthesis of phenomenolo
cal approaches@4–6# leads us to propose the following set
equations to describe phase separation of polymer-sol
mixtures under shear:

]f

]t
1v•“f5z21

“•Ff“S dF

df D
w

2“w:S dF

dwD
f

2“•tG
1uf , ~1!

rS ]v
]t

1v•“v D52“p1hs“
2v1“•t1~“f!S dF

df D
w

1uv , ~2!

l~f!F]s

]t
1 ṽ •“s2s•“ ṽ2~“ ṽ !†•s G1s2

b2

12
“

2s

5G~f!d. ~3!

In these equations, a linear stress-strain relations5Gw is
adopted with scalar modulusG, F(f,w) is the free energy
functional; ṽ5v2kBTu(“f)/z, t5s2Gd, with d the unit
tensor;l is the relaxation time, and the constantsu, z, hs ,
r, andb are the excluded volume interaction parameter,
friction coefficient, the solvent viscosity, the solvent densi
and the effective bond length, respectively. Note that, in g
eral, z is f dependent, andṽ has the interpretation of the
polymer velocity in a two-fluid picture@10#. As usual, the
incompressibility condition“•v50 is adopted, and is en
forced by choice of the pressurep. Equation~2! is the gen-
eralized Navier-Stokes equation, and together with Eq.~1!,
constitutes a generalized ModelH ~in the terminology of the
critical dynamics literature! @11#, which has been used pre
viously @4,6#. The stress tensors is treated as a dynamica
variable satisfying Eq.~3!, which is referred to as the uppe
convected Maxwell equation@12#. Our method shows tha
the polymer velocityṽ enters Eq.~3!, the Maxwell equation
@10# and yields, from a microscopic starting point, contrib
tions to the Maxwell equation arising from order-parame
gradients and involving the excluded volume interactions
R6344 © 1997 The American Physical Society
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First we show that if hydrodynamic interactions are n
glected~‘‘NHI-dynamics’’ ! @13#, Eqs.~1! and~3! can be de-
rived for a dilute system using the constrained distributio
projected out of the full distribution function@9#. The state of
polymer-solvent mixtures in the presence of shear flow
be described microscopically by a fluid velocity fieldv and a
set of monomer position vectors$R%5$R1 ,R2 , . . . ,RN%.
The velocityv obeys the Navier-Stokes equation~2!, while
the configuration of$R% is determined by its probability dis
tribution functionalC($R%,t), which is governed by the
Smoluchowski equation@14#

]C~$R%,t !

]t
5

]

]Rni
H 2v i~Rn!1Lnm

i j ~$R%!

3FkBT ]

]Rmj
1

]U

]Rmj
G J C~$R%,t ! , ~4!

whereLnm
i j is the mobility matrix,v(Rn) is the fluid velocity

at positionRn , U is the Edwards Hamiltonian@14#, and re-
peated indices imply summations (i , j5x,y,z, and
n51, . . . ,N). ~Our results may be easily generalized to
low U to contain any two-body, three-body . . . interactio
among the monomers. More general interactions among
monomers will just change the form ofṽ .! When hydrody-
namic interactions are ignored, the mobility matr
Lnm
i j 5z21d i jdnm , and one has what we have termed,

compactness, NHI dynamics@13#. When hydrodynamic in-
teractions are taken into account,Lnm

i j is given by the Oseen
tensor, and one has the Zimm model@14#. In either case, this
approach based on Eq.~4! is limited to dilute systems@14#.

For a given microscopic configuration$R% of the
system, the molecular expressions forf(r ) and s(r ) can

be written asf̂(r )5*0
Ndn d(r2Rn), and ŝ(r )5(3kBT/

b2)*0
Ndnd(r2Rn)(]Rn /]n)(]Rn /]n). The probability dis-

tribution functional of the state$f,s% at time t can be ex-
pressed asg(f,s;t)5*DR d(f2f̂)d(s2ŝ)C($R%,t).

For the equilibrium state, C reduces to
Ce($R%)5exp$2U($R%)/kBT%. Then,g(f,s) reduces to the
constrained partition functionge(f,s), which gives the con-
strained free energy of the system,F(f,w)
[2kBTlnge„f,s(w)…. Note that the independent variable
the free energy isw @15#, so the stress-strain relation
needed to obtainF(f,w). Our perturbation result~similar in
spirit to the familiar random-phase approximation@14#! for
the free energy to Gaussian order can be written as@16#

F~f,p!5kBTE drH 12 S u1
1

Nf0
Df21

b2

36f0
~“f!2

1
1

4kBTG~f0!
p:pJ , ~5!

wheref0 is the average concentration,p is a new stress
tensor introduced for convenience and given
s5kBT@fd1(b2/6)““f#1p, andG is the shear modulus
given by

G~f!5 3
2 G0~f!S uf1

1

ND , ~6!
-

s

n

-
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r

with G0(f)5kBTf the ‘‘ideal gas’’ pressure. For au sol-
vent, uf should be replaced bywf3 because the leading
interaction term is the three-body interaction. From the fo
of Eq. ~5!, the free energy can be expressed
F(f,p)5Fgl(f)1Fel(f,p), where Fgl is the usual
Ginzburg-Landau form andFel is the elastic contribution,
Fel(f,p)5

1
4*dr G

21(f)p:p1O„(f2f0)p
2, . . . …. The

form of the elastic free energy was proposed phenome
logically by Onuki @6#.

The Fokker-Planck~FP! equation necessary for derivin
the dynamical equations can be derived by taking the t
derivative ofg(f,s)

]g~f,s;t !

]t
5E DR d~f2f̂ !d~s2ŝ !

]C~$R%,t !

]t
.

~7!

Substituting Eq.~4! into Eq. ~7! and applying the local equi
librium approximation introduced by Kawasaki an
Sekimoto@9#, we obtain

]g~f,s;t !

]t
.E DR d~f2f̂ !d~s2ŝ !

3
]

]Rni
H 2v i~Rn!1Lnm

i j ~$R%!

3FkBT ]

]Rmj
1

]U

]Rmj
G J

3Ce~$R%!
g~f̂,ŝ;t !

ge~f̂,ŝ !
. ~8!

Following the procedures developed in Ref.@9# and using the
properties ofd functions, this FP equation can be written

]g~f,s;t !

]t
5E dr dr8

3(
a,b

d

da~r !
•H L rr 8

a
1L rr 8

ab
•FkBT d

db~r 8!

1
dF

db~r 8!G J g~f,s,t !, a,b5f,s , ~9!

whereF is the free energy and the projected Onsager co
ficients are given by

L rr 8
a

52Kd~r 82Rn!
]â~r !

]Rni
v i~r 8!L

ge

, ~10!

L rr 8
ab

5K ]â~r !

]Rni
Lnm
i j ~$R%!

]b̂~r 8!

]Rmj
L
ge

. ~11!

Here the averages are over the equilibrium probability dis
bution functionge(f,s). Note thatL

f, andLff are scalars,
Ls, Lfs, andLsf are second-rank tensors, andLss is a
fourth-rank tensor. In Eq.~9!, the dot products stand fo
‘‘full scalar products.’’ For example,f•Lf meansfLf,
s•Ls meanss:Ls, and so on.

From the FP equation~9!, we can obtain the Langevin
equations forf ands, respectively:
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]f~r ,t !

]t
52E dr8H L rr 8

f
1L rr 8

ff dF

df~r 8,t !

1L rr 8
fs :

dF

ds~r 8,t !
2kBTF d

df~r 8,t !
L rr 8

ff

1
d

ds~r 8,t !
:L rr 8

fsG J , ~12!

]s~r ,t !

]t
52E dr8H L rr 8

s
1L rr 8

ss :
dF

ds~r 8,t !
1L rr 8

sf dF

df~r 8,t !

2kBTF d

ds~r 8,t !
:L rr 8

ss
1

d

df~r 8,t !
L rr 8

sf G J . ~13!

Note that the above derivation is independent of a spec
form of Lnm

i j , so that Eqs.~12! and ~13! are valid even with
the inclusion of hydrodynamic interactions.

To further simplify the Langevin equations forf ands,
one needs to calculate the projected Onsager coefficien
hydrodynamic interactions are neglected, five of the coe
cients can be obtained exactly. We list the first four expr
sions here

L rr 8
f

52v i~r 8!f~r 8!@“ r 8 id~r2r 8!# , ~14!

~L rr 8
s

! i j52v l~r 8!@“ r 8 ld~r2r 8!#s i j ~r 8!

1v i~r 8!@“ r 8 ld~r 82r !#s l j ~r !

1v j~r 8!@“ r 8 ld~r 82r !#s l i ~r ! , ~15!

L rr 8
ff

5z21@“ r•“ r 8d~r2r 8!f~r 8!# , ~16!

~L rr 8
fs

! i j5z21$@“ r•“ r 8d~r2r 8!s i j ~r 8!#

1@“ ri“ r 8 ld~r2r 8!#s l j ~r 8!

1@“ r j“ r 8 ld~r2r 8!#s l i ~r 8!% . ~17!

The expressions forL rr 8
ff andL rr 8

fs have been obtained pre
viously @7#. The sixth Onsager coefficientL rr 8

ss cannot be
calculated exactly. However, starting with the definition
L rr 8

ff andL rr 8
ss given in Eq.~11!, we can derive the following

relations in the absence of hydrodynamic interactions:

2E dr8H L rr 8
ff dF

df~r 8!
1L rr 8

fs :
dF

ds~r 8!

2kBTF d

df~r 8!
L rr 8

ff
1

d

ds~r 8!
:L rr 8

fsG J
5z21FkBT“2S f1

1

2
uf2D2“•“•sG ,

~18!
c

. If
-
-

f

2E dr8H L rr 8
sf dF

df~r 8!
1L rr 8

ss :
dF

ds~r 8!

2kBTF d

df~r 8!
L rr 8

sf
1

d

ds~r 8!
:L rr 8

ss G J
5
kBT

z H 12b2 ~kBTfd2s!1“

2s1u@“•~“f!s

2~““f!•s2s•~““f!#J . ~19!

Note that Eq.~18! is exact, just dependent on the form of th
Edwards Hamiltonian. Eq.~19! involves a familiar decou-
pling approximation, in which averages over many bond d
placements are replaced by products of pairwise avera
@17#.

Substituting Eqs.~14!, ~16!, and~17! into Eq.~12!, carry-
ing out the integral overr 8, and adding the noise termuf ,
one obtains

]f

]t
1v•“f5z21H“•f“S dF

df D
s

1“•F“S dF

ds D
f

G :s
22““:Fs•S dF

ds D
f

G J 1uf . ~20!

Using the linear strain-stress relation, one can expr
(dF/df)s in terms of (dF/df)w and (dF/dw)f in Eq. ~20!
and find that, usingG}f appropriate to the dilute case, E
~1! is recovered. Next, substituting Eqs.~15! and ~19! into
Eq. ~13!, and carrying out the integral overr 8, we readily
arrive at Eq. ~3! with the dilute-system identification
l(f)5zb2/(12kBT), andG(f)5G0(f)5kBTf. Note that
a ‘‘renormalized’’G as suggested by Eq.~6! should appear
in a more complete derivation. We will discuss this point
greater detail in a subsequent paper concerning the static
deformed polymer systems@16#. Here the decoupling ap
proximation @17# noted above only yields the trivial ‘‘idea
gas’’ pressure on the right-hand side of Eq.~3!. This com-
pletes our derivation of Eqs.~1! and ~3! for the dilute case.

We now perform a linear analysis of this model. For
dilute system with no hydrodynamic interactions, one c
start with Eqs.~20! or ~1!. However, as we now show, th
Langevin equation forf can be obtained exactly withou
having an explicit form for the constrained free energ
F(f,s). Substituting Eqs.~14! and ~18! into Eq. ~12!, and
performing the integrals overr 8, we find directly

]f

]t
1v•“f5z21@kBT“

2~f1 1
2uf2!2“•~“•s!#1uf.

~21!

This is essentially the equation proposed by HF@4#. @Ex-
cluded volume interactions have been included; more co
plicated interactions among the monomers introdu
straightforward modifications of the Laplacian term.# Equa-
tions ~2!, ~3!, and ~21! describe phase separation in dilu
solutions, in the absence of hydrodynamic interactions. P
forming a similar analysis to HF@4# and Onuki@6#, we first
solve Eq.~3! for s to the ‘‘second-order fluid’’ level using



e

d

v
s

e-

t

li

se

a
sh
th

ase
sion
n
de-
hift.
s

en-
er
se,

hat
ed
ui-
for
e is
ear
ase
eri-
es

tula
for
the

RAPID COMMUNICATIONS

55 R6347DYNAMICS OF PHASE SEPARATION IN POLYMER . . .
the retarded motion expansion method@12#, from which the
stresss can be expressed in terms off andv @18#. At this
order only the leading non-Newtonian terms (O(u“vu2)! are
included. Then we substitute this constitutive relation fors
into Eqs. ~21! and ~2!. Finally, by settingf5f01f1 and
v5Syex1v1, whereS is the shear rate, we can solve th
equations forf andv to linear order inf1 andv1. The result
shows that the phase separation temperature is not shifte
the shear flow in the dilute case in agreement with HF@4#.

For the semidilute case, we assume that the Lange
equations~1!–~3! remain valid. This is reasonable since Eq
~1! and ~2! can be constructed phenomenologically@5,6#,
while Eq. ~3! is the Maxwell equation, which is used ph
nomenologically in studies of viscoelasticity@5#. Hence we
assume the concentration can be increased somewhat, re
ing the structure of Eqs.~1!–~3!, and that the only difference
from the dilute regime is the concentration dependence
some parameters, such as the modulusG(f) and l(f).
Hence the more general Langevin equations~1!–~3! may
reasonably be taken to describe semidilute dynamics. Sca
analysis@6# and our random-phase-approximation result~5!
show that at mean-field level for the semidilute ca
G(f);fa, with a52 for good solvent anda53 for a u
solvent. With this assumption, substituting Eq.~5! into Eqs.
~1! and ~2! and performing the linear analysis, we find th
the phase boundary is indeed shifted. The temperature
is proportional to the square of the shear streng
(DT)s5

1
4As(Tu2Tc)(f0 /f* ) @Sl(f0)#

2, whereAs5a(a
tt.
.

c-

s.

.

y

the
by

in
.

ain-

of

ng

,

t
ift
:

21)G(f0)/(kBTf0
3), f*51/AN, and Tu and Tc are the

theta and critical temperatures, respectively. That is, ph
separation is induced by the shear flow. From the expres
of (DT)s , we see that as long asa.1, the phase separatio
temperature is shifted. That is, a nonlinear concentration
pendence of the modulus is crucial for the temperature s
Whena53, the expression for (DT)s is exactly the same a
that obtained by Onuki@6#.

From a microscopic starting point, we developed a g
eral model for the dynamics of phase separation in polym
solutions in the presence of shear flow. For the dilute ca
the diffusion equation forf and the Maxwell equation for
s are derived from the Smoluchowski equation, showing t
viscoelastic behavior of polymeric solutions can be obtain
from that starting point. Linear analysis shows that the eq
librium phase boundary is not shifted by the shear flow
the dilute case, while the phase separation temperatur
indeed shifted upward for the semidilute case. Now it is cl
that concentration effects are crucial for a shift in the ph
boundary. These conclusions agree with available exp
ment data@3#, and unify previous phenomenological theori
@4,6#.
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